HMNAO banner

[Skip to Content]

StarFish.net

Starfish logo

HMNAO Web site

Astronomical Information for Taunton during July 2020

Starfish imageIntroduction


Welcome to StarFish.net – Astronomical Information from the UK Hydrographic Office ...

This page provides some astronomical information on a monthly basis for those of you living in the Taunton area. Timings are in BST (British Summer Time) unless otherwise noted. Latest additions or updates are highlighted with a red border.

This month we have sections on:


Earth at Aphelion

The Earth reaches aphelion, the point furthest from the Sun in its orbit, on Saturday July 4th at 12:35 BST when it is 152,095,295km from the Sun.

2020 Astronomical and Calendarial Sheet

Download Adobe Acrobat Reader Additional information on the phases of the Moon, the seasons, summer times, eclipses, chronological cycles and eras, religious calendars, the civil calendar and holiday dates in the United Kingdom can be found in HMNAO's Astronomical and Calendarial Sheet No. 107 for 2020. This is a pdf document for which a document reader can be downloaded by clicking on the Adobe Reader icon above.

Remember ...

This web page can also be accessed from outside the UK Hydrographic Office on http://astro.ukho.gov.uk/nao/taunton.html.

↻ The last update to this page was made on Sunday, 2020 July 12 at 18:15:05 BST.


Top Top of page

Starfish imageThe Sun


28-day
  animation of Solar Dynamics Observatory images of the Sun courtesy of NASA An animated view of the Sun's disk over the last twenty-eight days is shown in the image on the left. North is at the top of the image and east is to the left. These images come from the Helioseismic and Magnetic Imager instrument on the NASA Solar Dynamics Observatory (SDO) satellite. More multi-wavelength data from the SDO can be found here.

The tiny active region AR2766 from the old Solar Cycle 24 reappeared for a single day ending the previous four-day spotless run. It has now dissipated again leaving the Sun devoid of active regions for the last day. The total number of spotless days for 2020 has risen to one hundred and forty four, or 74% of the year so far. Solar winds are currently blowing with velocities of around 290 km/s and the planetary Kp geomagnetic activity index is likely to peak at 1 (quiet) today. A minor coronal hole lies in the central polar region of the northern hemisphere of the Sun's disk. Solar winds emanating from this feature should reach the Earth on July 12th–13th. A magnetic filament became unstable and snapped on July 8th, hurling a faint coronal mass ejection (CME) into space. This CME might hit the Earth's magnetic field on July 14th. The overall amount of solar activity remains at very low levels.

The increasing number of spotless days heralds the coming of the solar minimum expected in 2019/2020. The decline in the number of sunspots is greater than expected. This could be the deepest solar minimum in more than a century. This phase of the solar cycle brings increased numbers of cosmic rays to the Earth, an increased frequency of 'pink' aurorae and a slight dimming of the Sun of approximately 0.1% in terms of the total solar irradiance. A new satellite has been launched, TSIS-1, which will monitor the Sun over the next five years covering the whole of the upcoming solar minimum. Cooling and contraction of the Earth's upper atmosphere in response to the changes on the Sun due to the solar minimum also delayed the orbital decay of satellites such as the Chinese space station, Tiangong 1, which returned to Earth on April 2nd 2018 at 00:16 UTC. The Sun's magnetic field and solar winds provide some protection for the Earth from cosmic rays. A recent paper in the journal Space Weather claims that this solar minimum could see a rise in the number of cosmic rays reaching the Earth by as much as 30% due to the weakening magnetic field of the Sun and reduced levels of solar winds. This could mean an increased risk of radiation exposure for travellers on commercial airlines and possible changes to the climate.

NASA reported that a reversal of the Sun's magnetic field took place at the start of 2014 indicating that the maximum of solar cycle 24 had been reached. A plot of sunspot numbers, both observed and predicted versus time indicates that this solar maximum is more complex than had been previously predicted. The maximum is double-peaked in a similar manner to that of the previous maximum of 2001/2002. The individual peaks occurred in 2011 and 2014 with the latter being the larger of the two. However, sunspot numbers are significantly down on the predictions made for this maximum — indeed solar cycle 24 may be the weakest in the last 100 years or so i.e. since solar cycle 14. Assuming the start of 2014 was the beginning of the post maximum phase of solar cycle 24, we are now well into the declining phase of activity where individual energetic events can spawn some of the most powerful flares and coronal mass ejections of the cycle. The so-called Carrington event on September 1st–2nd 1859 during Solar Cycle 10 is a good example of just what might be expected from this type of violent outburst. The next solar minimum, characterized by periods of many days without sunspots and flare activity, is likely to occur between July 2019 and September 2020. It is likely to be a deep minimum with long periods without much sunspot or flare activity. Space weather will be dominated by solar winds and cosmic rays rather than sunspots and solar flare activity. The next solar maximum is expected to occur between 2023 and 2026. Solar cycle 25 is likely to be similar to solar cycle 24 which means another weak maximum and a long, deep minimum.

The latest information on solar activity can be found at SpaceWeather.com and at the Space Weather Prediction Center Space Weather Enthusiasts Dashboard.

If an auroral display is possible or likely, warnings can be received from AuroraWatch UK. More UK-focused geomagnetic data can be found at the British Geological Survey web site.


Top Top of page

Starfish imageThe Moon


The sequence of Moon phases for this month and their designations are shown in the following animation:

Continuous Moon Phase animation
  Moon phases for July 2020 are as follows:
Full Moon symbol Full Moon Sunday July 5th at 05:44 BST
"Hay Moon"
Last Quarter symbol Last Quarter Monday July 13th at 00:29 BST
New Moon symbol New Moon Monday July 20th at 18:33 BST
Lunation 1207
First Quarter symbol First Quarter Monday July 27th at 13:33 BST

The Moon is at apogee (i.e. furthest from the Earth) on Sunday July 12th at 20:27 BST when it is 404,199 km from the Earth. It is at perigee (i.e. nearest to the Earth) on Saturday July 25th at 06:02 BST when it is 368,361 km from the Earth.

There are no occultations of any planets or bright stars by the Moon during July.

Please follow the New Moon link above to find out more about our Crescent Moon Watch program which involves making sighting of the new crescent moon as early as possible after the instant of New Moon.


Top Top of page

Starfish imageEclipses


Partial eclipse of the Sun There are six eclipses visible during 2020, four penumbral eclipses of the Moon and one annular and one total eclipse of the Sun. Parts of three of the penumbral eclipses of the Moon are visible from the United Kingdom, only one is visible in its entirety. Neither of the solar eclipse are visible from the United Kingdom.

A penumbral eclipse of the Moon occurred on Friday January 10th 2020. It was visible in its entirety from northern Alaska, Asia, the Philippines, Indonesia, western Australia, the Middle East, Madagascar, Africa except eastern parts, Europe including the United Kingdom, Iceland and most of Greenland. Parts of the eclipse were visible from north-western parts of North America, most of Australia, eastern parts of Africa and north-eastern parts of Canada. This was a deep penumbral eclipse with a magnitude of 0.921, making it somewhat easier to discern. From Taunton, the whole eclipse was visible starting about an hour after moonrise at 17:06 UT and ending at 21:14 UT.

A penumbral eclipse of the Moon occurred on Friday June 5th 2020. It was visible in its entirety from most of Australia except the north-eastern part, the Philippines, Indonesia, south-east Asia, most of China except the north-eastern part, central Asia, India, the Middle East, Madagascar and Africa except the north-western part. Parts of the eclipse were visible from New Zealand, Japan, northern Asia, Europe including the United Kingdom, north-western Africa and easternmost parts of South America. This was a modest penumbral eclipse with a magnitude of 0.593, making it difficult to discern. From Taunton, the eclipse started at moonrise at 21:12 BST and ended at 22:07 BST.

An annular eclipse of the Sun occurred on Sunday June 21st 2020. It was visible in its entirety from most of the eastern half of Africa, the northern half of Madagascar, south-east Europe, most of Asia except the northernmost part, westernmost parts of Micronesia and Melanesia, Papua New Guinea and northernmost parts of Australia. The path of annularity began over the north-eastern part of the Republic of the Congo and crossed the north-western part of the Democratic Republic of Congo, the south-eastern tip of the Central African Republic, South Sudan, northern Ethiopia, central Eritrea, Yemen, the south-eastern tip of Saudi Arabia, north-eastern Oman, Pakistan, the northernmost part of India, Tibet, southern China, Taiwan and ended south-east of Guam in the Northern Mariana Islands. The eclipse was not visible from the United Kingdom.

A penumbral eclipse of the Moon occurs on Sunday July 5th 2020. It is visible in its entirety from westernmost parts of Africa and the Americas with the exception of north-western parts of North America. Parts of the eclipse are visible from Madagascar, most of Africa, western Europe including the United Kingdom, the southernmost part of Greenland and north-western parts of the United States, central Canada, eastern Polynesia and New Zealand. From Taunton, the shallow penumbral eclipse starts at 04:04 BST and ends at moonset at 05:01 BST. It will be a difficult eclipse to detect with the naked eye.

A penumbral eclipse of the Moon occurs on Monday November 30th 2020. It is visible in its entirety from Greenland, North America, Polynesia, the North Island of New Zealand, northern Japan and Siberia. Parts of the eclipse are visible from Scandinavia, the United Kingdom, the Caribbean region, South America, the South Island of New Zealand, Australia, south east Asia and central Asia. From Taunton, the reasonably deep penumbral eclipse starts at 07:30 UT and ends at moonset at 07:48 UT. The depth of the eclipse will make it easier to discern.

A total eclipse of the Sun occurs on Monday December 14th 2020. It is visible in its entirety from the south-eastern part of the Pacific basin including French Polynesia, most of South America except the northern part, parts of Antarctica, the South Atlantic Ocean and the south-western part of Africa. The path of totality begins over the north-eastern part of French Polynesia and passes over the south-eastern Pacific Ocean and then crosses the central part of Chile and Argentina, passing over the South Atlantic Ocean and ends just off the coast of central Namibia. The eclipse is not visible from the United Kingdom.

Further information on all the eclipses in 2020 can be found on the Eclipses Online web pages. This web site provides information on both solar and lunar eclipses in the period from 1501 CE to 2100 CE. Global circumstances of both solar and lunar eclipses are provided as well as local circumstances of the solar eclipses based on a gazetteer of approximately 1500 locations worldwide. Eclipses for next year, 2021, are also available.


Top Top of page

Starfish imageThe Planets


Planets visible with the naked eye ...

Mercury image

Mercury reaches inferior conjunction on Wednesday July 1st and becomes visible low in the east north-eastern morning twilight sky at the end of the second week of July. It reaches greatest western elongation on Wednesday July 22nd. At mid-month, it is a magnitude +1.6 object which brightens significantly to magnitude −0.9 by the end of the month. Mercury is 4° south of the thin waning crescent moon on Sunday July 19th.


Venus image

Venus is prominent in the east north-eastern morning twilight sky, rising two to three hours before the Sun. It fades slightly from magnitude −4.7 at the start of the month to magnitude −4.6 at the end of July, reaching greatest illuminated extent on Friday July 10th. Venus lies 1.0° north of Aldebaran on Sunday July 12th and 3° south of the waning crescent moon on Friday July 17th.


Mars image

Mars rises in the eastern sky around midnight. It spends the first week or so of the month in the constellation of Pisces, moving into the north-western part of Cetus for most of July. Mars returns to Pisces for the last few days of the month. Mars brightens noticeably from magnitude −0.5 at the start of the month to −1.0 at the end of July. It lies 2.0° north of the last quarter moon on Saturday July 11th.


Jupiter image

Jupiter is visible in the south-eastern late evening sky rising two to four hours before midnight and setting within an hour or so of sunrise. It lies in the constellation of Sagittarius until late December. Jupiter remains at magnitude −2.7 for the whole of July. It lies 1.9° north of the full moon on Sunday July 5th. Jupiter reaches opposition on Tuesday July 14th and is visible throughout the night for the whole of the month. The separation of Jupiter and Saturn grows from 6.2° to 7.7° during July.


Saturn image

Saturn is visible in the south-eastern late evening sky rising two to four hours before midnight and setting within an hour or so of sunrise. It lies in the constellation of Capricornus at the start of July, moving into Sagittarius for the remainder of July. Saturn brightens slightly from magnitude +0.2 to magnitude +0.1 during July. It lies 2.0° north of the waning gibbous moon on Monday July 6th. Saturn reaches opposition on Monday July 20th and is visible throughout the night for the whole of month. The separation of Saturn and Jupiter grows from 6.2° to 7.7° during July.


Planets visible with Binoculars ...

Uranus image

Uranus rises in the east north-eastern sky an hour or so after midnight and sets in the mid-afternoon. It is a blue-green object which remains at magnitude +5.8 for the whole of the month. Uranus lies in the south-western part of the constellation of Aries where it remains for the rest of the year. Uranus is approximately 12.4° north east of the fourth magnitude star Omicron Piscium. This planet can also be glimpsed with the naked eye under optimum conditions.


Neptune image

Neptune rises about an hour or so before midnight in the eastern twilight sky and sets in the late morning. It lies in the north-eastern part of the constellation of Aquarius where it will remain for the rest of the year. Neptune is approximately 9° to the north east of the third magnitude star Lambda Aquarii. It is a bluish object of magnitude +7.9 at the start of the month, brightening slightly to magnitude +7.8 by the end of the month. It can be visible with good binoculars under optimum conditions although it can also be difficult to distinguish Neptune from other stellar objects of a similar magnitude.


... & Telescopes!

Pluto image

Pluto rises about two to three hours before midnight in the south-eastern morning sky setting around sunrise. It lies in the north-eastern part of the constellation of Sagittarius about 1.75° to the south east of Jupiter in mid-July. It reaches opposition on Wednesday July 15th and is visible throughout the night for most of the month. Strictly speaking, this is a dwarf planet which was demoted from the ranks of the 'bona-fide' planets at the International Astronomical Union General Assembly in Prague in 2006. At magnitude +14.5, you will need a much larger telescope to find this remote member of the Solar System.



Top Top of page

Starfish imageMeteor Showers


Perseid meteors in 2010 The start of the Perseid meteor shower will be visible this month. These meteors are associated with the comet 109P/Swift-Tuttle which orbits the Sun every 133 years. Although the Perseids are active from Friday July 17th to Monday August 24th, they reach the peak of their activity in the afternoon of Wednesday August 12th between 14:00 BST and 17:00 BST so it is worth trying to observe them in the early hours of either Wednesday August 12th or Thursday August 13th. The radiant, the point in the sky from which the meteors appear to originate, is reasonably high in the north-eastern sky, and lies between the "W-shaped" constellation of Cassiopeia and the top of the inverted "Y-shape" of Perseus below Cassiopeia. This year, the peak of the shower coincides with a last quarter moon meaning skies will be bright in the post-midnight period. At the peak of the shower, we would expect to see as many as 110 meteors per hour on a dark night. However, moonlight will make the fainter meteors difficult to see. The Perseids are often bright, quite fast and frequently leave persistent trails. Their numbers also increase somewhat as morning twilight approaches. The Perseids also produce a significant number of fireballs i.e. meteors that appear to be brighter than the planet Venus.

No other significant meteor showers visible from our latitudes are active this month. Further information on these and other meteor showers occurring during 2020 can be found at the International Meteor Organization and their 2020 Meteor Shower Calendar.

It is worth noting that bright sporadic meteors and fireballs are possible at any time e.g. the fireball observed over many parts of England and Scotland on Saturday March 3rd 2012 at 21:40 GMT. Larger events, known as bolides, are rarer. Typically, this is a very bright fireball reaching an apparent magnitude of −14 or so, perhaps three times as bright as a full moon. Even rarer are the superbolides, events with apparent magnitudes of −17 or so, around 50 times brighter than the full moon. A recent example of a superbolide was the Chelyabinsk meteor of 2013 February 15th at 03:20 UTC which may have been a 20-metre diameter near-Earth asteroid.

Another loosely-related phenomenon is the re-entry of space debris from space vehicles and satellites whose orbits are decaying to the point where they burn up in the Earth's atmosphere. A couple of well-reported examples of this occurred at around 23:00 BST on Friday September 21st 2012 as well as the return of the GOCE satellite just after midnight on Tuesday November 12th 2013.


Top Top of page

Starfish imageComets


Comet McNaught - January 2007There are a number of comets around the sky at the moment. However, most of them require telescopic assistance to see them and some may be too far south in the sky to be seen by observers based in the United Kingdom. Here is a brief summary of the comets that may be accessible to observers with binoculars or small telescopes in the northern hemisphere.

C/2017 T2 (PANSTARRS) starts the month as a magnitude 9.7 object visible with binoculars or a small telescope in the constellation of Canes Venatici before crossing over into the neighbouring constellation of Coma Berenices for the latter half of July. It is highest in the western sky before midnight. It reached perihelion on Monday May 4th 2020 and is likely to fade by a magnitude or so during July.

Binoculars - look out for this! C/2020 F3 (NEOWISE) was discovered on 2020 March 27th by the infra-red survey telescope aboard the NEOWISE spacecraft.This comet reaches perihelion on Friday July 3rd and, so far, appears to have survived its 0.27 au encounter with the Sun. It will pass the Earth on Thursday July 23rd at a distance of 0.7 au. Original predictions suggested that it would reach fourth magnitude but recent SOHO observations indicate that it has brightened significantly to magnitude +1. This is an integrated magnitude so it will probably be best seen with binoculars. It starts the month in the constellation of Taurus, moving into Auriga for ten days, followed by Lynx for five days and then into Ursa Major for twelve days, ending the month in Coma Berenices. It will become visible to observers at our northerly latitudes towards the middle of July, very low in both morning and evening twilight skies as the comet passes under the north celestial pole. Recent images of the comet (and some noctilucent cloud) were taken on Thursday July 2nd from Arizona and during morning twilight on Saturday July 4th from the Czech Republic. The comet has a dust tail about a degree long as well as a faint ion tail as can be seen in this photograph taken from north-eastern France on July 7th. Another image of the comet as well as a display of noctilucent cloud was taken on July 11th from Liverpool. An evening image taken on July 11th from northernmost Italy shows the comet is now around magnitude +2.


Top Top of page

Starfish imageNoctilucent Clouds


Noctilucent Cloud Strictly speaking, this phenomenon is an atmospheric one rather than a truly astronomical one. Nonetheless, living in the United Kingdom, we are well placed to see this unusual spectacle during the shorter nights of the summer months, particularly in June and July.

These tenuous cloud-like structures are composed of ice-coated particles at an altitude of around 80 km in the mesosphere, approximately four times higher than the limiting altitude of cirrus cloud. Created by water vapour freezing around meteor smoke in the upper atmosphere, their altitude means that they appear silvery-blue in colour against the darker twilight sky when the Sun lies between 6° and 16° below the horizon.

Noctilucent or "night shining" Cloud is normally seen between 10° and 20° above the northern horizon exhibiting a range of forms — perhaps the most common is the "herring-bone" pattern. Normal visibility limits are mid-May to mid-August, peaking around the time of the Summer Solstice. More information, including the facility to report your sightings, can be found at the Noctilucent Cloud Observers' Homepage.

A word of warning; displays are unpredictable and more frequently seen from the northern half of the United Kingdom. Nevertheless, observations have been submitted by observers living in this locality e.g. from Exeter and Castle Cary.

Maps constructed from AIM satellite imagery showing the current positions of Noctilucent Clouds have been restored. They can be found here.

A photograph demonstrating that these clouds can be seen from southern parts of the United Kingdom was taken by D. Tate in Castle Cary in the early hours of June 10th 2013.

News ...

[23rd May 2020] The first noctilucent cloud display of the northern season was seen by the AIM satellite over the Arctic Ocean north of Siberia on Sunday May 17th and marks one of the earliest starts to the NLC season. The display was small and relatively weak but it should not be too long before stronger displays appear over northern parts of the United Kingdom. Another small display was reported by ground-based observers in Estonia, Finland and Latvia on Saturday May 23rd.

[31st May 2020] The United Kingdom has seen its first display of noctilucent cloud. A display was seen in the early hours of Sunday May 31st from Edinburgh.

[7th June 2020] An early season sighting of NLC was made at the end of the first week in June in the London area. Record-breaking cold temperatures in the mesosphere may be an indicator of a very active NLC season.

[21st June 2020] An unusually bright display of NLC was observed from London on June 21st. This may be an indication of even more intense displays in the near future.

[6th July 2020] A widespread, bright display of NLC was observed over the whole of Europe on July 5th–6th. An example of what was observed can be seen in this photograph taken over Budapest.


Top Top of page

Starfish imageInternational Space Station


NASA International Space Station photo If you want to look for the International Space Station (ISS) as it passes over Taunton, please have a look at this page on the Heavens Above web site. The ISS is at least as bright as a first magnitude star and can approach the brightness of Venus. Similarly, if you want to look for the Chinese space station, Tiangong-1, you are too late! Tiangong-1 re-entered the Earth's atmosphere in an 'uncontrolled manner' on April 2nd 2018 at 00:16 UTC over an uninhabited part of the central Pacific Ocean at longitude 164.3° west and 13.6° south after the loss of a telemetry link in 2016. Information for Tiangong-2, the sole remaining Chinese space station orbiting the Earth, can be found on this page. Tiangong-2 is significantly fainter than the ISS, normally as bright as a third or fourth magnitude star. Predictions for other satellites may also be obtained from the Heavens Above web site.


Top Top of page

Starfish imageAurorae


Ovation auroral prediction for the northern hemisphere

The above image is a 30 minute forecast of the location and probability of auroral activity based loosely on a model developed at Johns Hopkins' Applied Physics Laboratory known as the Ovation Aurora Forecast model. It provides estimates of the energy per unit area on the Earth's atmosphere from observations of the solar wind and interplanetary magnetic field made by the Advanced Composition Explorer satellite in conjunction with empirical relationships derived from the Defense Meteorological Satellite Program. It shows where the aurora is most likely to be seen and how bright it might be. The model generates a global estimate of power, called the Hemispheric Power, deposited into the atmosphere in gigawatts (GW). For powers of less than 20GW, little or no aurora may be visible. For powers of 20-50GW, you may need to be relatively close to the aurora to see it. For values above 50GW, the aurora should be easily observable, active and mobile. For values above 100GW, this is considered to be a significant storm where the aurora may be visible from hundreds of miles away. The current prediction is downloaded when you load this page. If you want to download the latest model, simply reload this page or press F5. If you want to see the full-sized map, please click on the above image.

If an auroral display is possible or likely, warnings can be received from AuroraWatch UK. More UK-focused geomagnetic data can be found at the British Geological Survey web site.


Top Top of page

Starfish imageSky chart for mid-July at 22:00 BST for Taunton


Sky chart for mid-July 2020 from Taunton at 22:00 BST

The above sky chart, generated from the Heavens-Above.com web site, shows what the night sky looks like at 22:00 BST on Thursday July 16th 2020 from Taunton. The night sky will look the same an hour later at 23:00 BST at the beginning of the month and an hour earlier at 21:00 BST at the end of the month. Please click on the chart to see a full-sized sky chart image. If you want to generate your own star chart for Taunton for another date and/or time, please follow this link


Top Top of page

Starfish imageRise/set times (BST) for the Sun & Moon for Taunton


In July 2020, the amount of daylight (measured from sunrise to sunset) decreases from 16 hours 28 minutes at the start of the month to 15 hours 22 minutes at the end of the month. Total daylight (sunrise to sunset) for the month is 495 hours 56 minutes.

start and end times of civil, nautical and astronomical twilights.

July 2020
Date &
Weekday
Rise/Set timesDay
Length
SunMoon
RiseSetRiseSet
h mh mh mh mh m
01Wed05:0221:3017:2902:2416:28
02Thu05:0321:3018:5002:5116:27
03Fri05:0421:2920:0603:2416:25
04Sat05:0521:2921:1304:0716:24
05Sun05:0521:2822:0705:0116:23
06Mon05:0621:2822:4906:0416:22
07Tue05:0721:2723:2107:1416:20
08Wed05:0821:2623:4508:2616:18
09Thu05:0921:26** **09:3716:17
10Fri05:1021:2500:0610:4616:15
11Sat05:1121:2400:2311:5316:13
12Sun05:1221:2300:3913:0016:11
13Mon05:1321:2200:5514:0616:09
14Tue05:1421:2101:1115:1316:07
15Wed05:1621:2001:3016:2116:04
16Thu05:1721:1901:5117:3116:02
17Fri05:1821:1802:1918:4016:00
18Sat05:1921:1702:5419:4515:58
19Sun05:2121:1603:4020:4315:55
20Mon05:2221:1504:3821:3215:53
21Tue05:2321:1405:4822:1015:51
22Wed05:2421:1207:0622:4115:48
23Thu05:2621:1108:2823:0615:45
24Fri05:2721:1009:5023:2715:43
25Sat05:2921:0811:1223:4715:39
26Sun05:3021:0712:33** **15:37
27Mon05:3121:0613:5500:0715:35
28Tue05:3321:0415:1600:2915:31
29Wed05:3421:0316:3600:5415:29
30Thu05:3621:0117:5201:2415:25
31Fri05:3720:5919:0102:0215:22
** ** No phenomenon that day
PLEASE NOTE: These times are in Greenwich Mean Time (GMT) except between 01:00 GMT on March 29th and 01:00 GMT on October 25th when the times are in BST (British Summer Time) which is one hour in advance of GMT.

Useful area for table of rise/set times The timings in the table above should be accurate to within 1–2 minutes inside the red circle superimposed on the map shown on the left.

Rising and setting times for the Sun, Moon and planets and times of twilights for other locations can be obtained from HMNAO's Websurf web pages using the Rise, Set and Twilight Times option.

The actual times at which the Sun will just appear, or disappear, will depend on the difference between the altitudes of the observer and the local horizon and the actual refraction, which depends on the meteorological conditions along the light path. Differences of a minute or so from the tabulated times are to be expected.

For the drivers amongst you, the 'Hours of Darkness', as defined in the Road Vehicle Lighting Regulations (1989), start half an hour after sunset and end half an hour before the following sunrise. Headlights should be used during the Hours of Darkness and sidelights in the half hour periods after sunset and before sunrise. These timings can also be obtained from HMNAO's Websurf web pages using the Rise, Set and Twilight Times option.

For the VFR (Visual Flight Rules) pilots amongst you, night, according to Statutory Instrument 2009 No. 3015, Civil Aviation, The Air Navigation Order 2009, Part 33 (Interpretation), Article 255(1), means "the time from half an hour after sunset until half an hour before sunrise (both times inclusive), sunset and sunrise being determined at surface level". In other words, the night time period starts at the beginning of the Hours of Darkness and finishes at the end of the Hours of Darkness.


Top Top of page

© Crown Copyright 2012-2020 / Privacy Policy
E-mail: hmnao@ukho.gov.uk
Last modified: Sunday, 12 July 2020 at 18:15:05 BST