HMNAO banner

[Skip to Content]

Starfish logo


Astronomical Information for Taunton during August 2017

Starfish imageIntroduction

Welcome to — Astronomical Information from the UK Hydrographic Office

This page provides some astronomical information on a monthly basis for those of you living in the Taunton area. Timings are in BST (British Summer Time) unless otherwise noted. Latest additions or updates are highlighted with a red border.

This month we have sections on:

2017 Astronomical and Calendarial Sheet

Download Adobe Acrobat Reader Additional information on the phases of the Moon, the seasons, summer times, eclipses, chronological cycles and eras, religious calendars, the civil calendar and holiday dates in the United Kingdom can be found in HMNAO's Astronomical and Calendarial Sheet No. 104 for 2017. This is a pdf document for which a document reader can be downloaded by clicking on the Adobe Reader icon above.

Remember ...

This web page can also be accessed from outside the UK Hydrographic Office on

Top Top of page

Starfish imageThe Sun

28-day animation of NASA Solar Dynamics Observatory images of the Sun courtesy NASA An animated view of the Sun's disk over the last twenty eight days is shown in the image on the left. North is at the top of the image and east is to the left. These images come from the Helioseismic and Magnetic Imager instrument on the NASA Solar Dynamics Observatory satellite.

There are two active regions on the Sun's Earth-facing hemisphere. The sprawling active region AR2671 has more than tripled in size during its progess across half of the Sun's visible disk and has sprouted over a dozen dark cores of various sizes. This 140,000-mile long feature has also developed the capability of producing medium-strength M-class solar flares. Indeed, one such M1.1 flare was observed at 01:50 UT on Sunday August 20th. The large northern hemisphere coronal hole responsible for the high velocity stream of solar wind (moving at around 600km/s) currently enveloping the Earth has now reached the north-western limb of the Sun. Observers at high latitudes have experienced a number of auroral displays produced by G1-class geomagnetic storms driven by this stream of solar wind in the past four days. There is also a large prominence on the eastern limb of the Sun which may be visible to those lucky enough to see totality across the United States on August 21st. They will also witness a fine display of coronal streamers if predictions prove correct. Overall solar activity remains at low levels.

NASA reported that a reversal of the Sun's magnetic field took place at the start of 2014 indicating that the maximum of solar cycle 24 had been reached. A plot of sunspot numbers, both observed and predicted, versus time indicates that this solar maximum is more complex than had been previously predicted. The maximum is double-peaked in a similar manner to that of the previous maximum of 2001/2002. The individual peaks occurred in 2011 and 2014 with the latter being the larger of the two. However, sunspot numbers are significantly down on the predictions made for this maximum — indeed solar cycle 24 may be the weakest in the last 100 years or so i.e. since solar cycle 14. Assuming the start of 2014 was the beginning of the post maximum phase of solar cycle 24, we are now well into the decreasing phase of activity where individual energetic events can spawn some of the most powerful flares and coronal mass ejections of the cycle. The so-called Carrington event of 1859 is a good example of just what might be expected from this type of violent outburst. The next solar minimum, characterized by periods of many days without sunspots and flare activity, may occur in 2019 or 2020. It is likely to be a deep minimum with long periods without much sunspot or flare activity.

The latest information on solar activity can be found at and at the Space Weather Prediction Center Space Weather Enthusiasts Dashboard.

If an auroral display is possible or likely, warnings can be found at AuroraWatch UK. More UK-focused geomagnetic data can be found at the British Geological Survey web site.

Top Top of page

Starfish imageThe Moon

The sequence of Moon phases for this month and their designations are shown in the following animation:

Moon phase animation

Moon phases specific to August 2017 are as follows:

Full Moon symbol Full Moon – Monday August 7th at 19:11 BST

Last Quarter symbol Last Quarter – Tuesday August 15th at 02:15 BST

New Moon symbol New Moon – Monday August 21st at 19:30 BST (Lunation 1171)

First Quarter symbol First Quarter – Tuesday August 29th at 09:13 BST

The Moon is at apogee (furthest from the Earth) on Wednesday August 2nd at 18:55 BST when it is 405,025km from the Earth. It is again at apogee on Wednesday August 30th at 12:25 BST when it is 404,308km from the Earth. It is at perigee (closest to the Earth) on Friday August 18th at 14:18 BST when it is 366,121km from the Earth.

On Wednesday August 16th, the Moon continues its current series of occultations of Aldebaran, the orange first magnitude star in the constellation of Taurus. This occultation is visible from the northern tip of South America, the Caribbean region, northernmost parts of Africa, Europe, the Middle East, most of the Arabian Peninsula and western Asia. This occultation is visible from the United Kingdom except the northernmost parts of Scotland. From Taunton, the occultation by the last quarter Moon starts at 07:39 BST and ends at 08:36 BST.

Please follow the New Moon link above to take part in our Crescent Moon Watch program which involves sighting the new crescent moon as early as possible after the instant of New Moon.

If you want to know what the Moon looks like now, try this USNO page generated by our colleagues in the Astronomical Applications Department at the US Naval Observatory in Washington.

Top Top of page

Starfish imageEclipses

Partial eclipse of the Sun There are four eclipses in 2017, the first of which occurred in February as a deep penumbral eclipse of the Moon which was visible in its entirety from the United Kingdom. The second eclipse of February, an annular eclipse of the Sun, was not visible from our shores. We have a very brief glimpse of the final penumbral stages of a partial eclipse of the Moon at moonrise early in August. The last eclipse of the year is a total eclipse of the Sun visible principally from the United States. It is interesting to note that as many as 250 to 300 million people will be within a day's drive of the path of totality of this eclipse.

A penumbral eclipse of the Moon occurred on Friday February 10th-Saturday February 11th 2017 which was visible from western Asia, Africa, Europe, Greenland, the Americas and parts of the Pacific Ocean. This deep penumbral eclipse was visible from the United Kingdom starting at 22:32 GMT on February 10th and ending at 02:55 GMT on February 11th. Penumbral eclipses of the Moon involve very subtle changes in brightness and can be difficult to observe. From Taunton, the whole eclipse was visible.

An annular eclipse of the Sun occurred on Sunday February 26th 2017 which was visible as a partial eclipse from the south-eastern Pacific Ocean, the southern half of South America, the south Atlantic Ocean, most of Antarctica and Africa except the northern part. The path of annularity started 1800km south of Easter Island and crossed southern parts of Chile and Argentina, the Atlantic Ocean, central Angola, the north-western tip of Zambia and ended over the southern part of the Democratic Republic of Congo, 100km north west of Lubumbashi. The minimum duration of annularity was 0m44s over the mid-south Atlantic Ocean. The eclipse was not visible from the United Kingdom.

A partial eclipse of the Moon occurs on Monday August 7th 2017 which is visible from the western Pacific Ocean, Oceania, Australasia, Asia, Africa, Europe and the easternmost tip of South America. This shallow partial eclipse is visible from the United Kingdom during its final penumbral stage from 20:19 BST to 21:53 BST. From Taunton, the eclipse is visible as a penumbral eclipse from moonrise at 20:40 BST to the end of the penumbral stage at 21:53 BST.

A total eclipse of the Sun occurs on Monday August 21st 2017 which is visible as a partial eclipse from the Hawaiian Islands, the north-eastern Pacific Ocean, Oceania, North and Central America, northern parts of South America, the westernmost tip of Europe and West Africa. The path of totality starts 2600km north-west of the Hawaiian Islands and makes landfall over the United States mainland on the Oregon coast between Depoe Bay and Lincoln City. It then passes over northern Oregon, southern Idaho, the extreme south-western tip of Montana, central Wyoming, Nebraska, north-eastern Kansas, the south-western tip of Iowa, Missouri, southern Illinois, western Kentucky, eastern Tennessee, north-eastern Georgia, western North Carolina and South Carolina leaving the United States mainland near McClellanville. The path of totality ends 1200km south-west of Dakar in Senegal. The maximum duration of totality, 2m41s, occurs approximately 10km south-east of Makanda in Illinois. A more detailed map of the United States showing the path of totality and local circumstances for a number of locations is available.

Eclipse configuration taken from the UK taken from the Daily Telegraph This eclipse is also visible at sunset from the United Kingdom as a very small partial eclipse (see the diagram above). From Taunton, the eclipse starts at 19:40 BST, reaches maximum eclipse (4.7% obscuration) at 20:06 BST and ends at 20:31 BST, 10 minutes after sunset. The eclipsed part of the Sun sets at 20:17 BST from Taunton.

Further information on all the eclipses in 2017 can be found on the Eclipses Online web pages. This web site provides information on both solar and lunar eclipses in the period from 1501 CE to 2100 CE. Global circumstances of both solar and lunar eclipses are provided as well as local circumstances of the solar eclipses based on a gazetteer of approximately 1500 locations worldwide. Eclipses for next year, 2018, are also available.

Top Top of page

Starfish imageNaked-eye Planets

Mercury image

Mercury is just visible in the evening twilight sky for the first half of the month but is best seen by observers in the southern hemisphere. It sets in the western sky before the end of evening civil twilight and fades from magnitude −0.3 at the start of the month to magnitude +1.7 by the middle of August. Mercury reaches inferior conjunction on Saturday August 26th.


Venus image

Venus is still a prominent object low in the morning twilight sky having risen in the north-eastern sky around an hour and a half before the start of morning nautical twilight. It fades slightly from magnitude −4.0 at the start of the month to magnitude −3.9 at the end of August. Venus lies 2° north of the waning crescent Moon on Saturday August 19th and lies 7° south of Pollox on Monday August 21st.

Mars image

Mars is too close to the Sun to be seen this month. It reached superior conjunction on Thursday July 27th in the constellation of Cancer. It will reappear in the morning sky in mid-September in the constellation of Leo.

Jupiter image

Jupiter is visible in the west south-western sky at the start of evening civil twilight and sets in the western sky in the late evening. It lies in the constellation of Virgo for the whole of August. Jupiter fades slightly from magnitude −1.9 at the start of the month to magnitude −1.8 at the end of August. It lies 3° south of the waxing crescent Moon on Friday August 25th.

Saturn image

Saturn rises in the south-eastern sky before sunset and can be seen low in the southern sky in the mid-evening. It fades slightly from magnitude +0.3 at the start of the month to +0.4 at the end of August as it moves in a retrograde manner until the start of last week of August through the eastern part of the constellation of Ophiuchus. Saturn lies 3° south of the waxing gibbous Moon on Thursday August 3rd and 4° south of the waxing gibbous Moon on Wednesday August 30th.

Top Top of page

Starfish imageMeteor Showers

Perseid meteors in 2010 The Perseid meteor shower will be visible this month. It is associated with the comet 109P/Swift-Tuttle which orbits the Sun every 133 years. Although the Perseids are active from around mid-July to late August, they reach the peak of their activity in the early evening of Saturday August 12th so it is worth trying to observe them in the early hours of either Saturday August 12th or Sunday August 13th. The radiant, the point in the sky from which the meteors appear to originate, is reasonably high in the north-eastern sky, and lies between the "W-shaped" constellation of Cassiopeia and the top of the inverted "Y-shape" of Perseus below Cassiopeia. This year, the peak of the shower coincides with the waning gibbous phase of the Moon meaning skies will not be fully dark in the latter half of the night. At the peak of the shower we would expect to see as many as 150 meteors per hour on a dark night. The Perseids are often bright, quite fast and frequently leave persistent trails. Their numbers also increase somewhat as morning twilight approaches. The Perseids also produce a significant number of fireballs i.e. meteors that appear to be brighter than the planet Venus. Further information can be found at the International Meteor Organization web site. There are no other significant meteor showers active in August.

It is worth noting that bright sporadic meteors and fireballs are possible at any time e.g. the fireball observed over many parts of England and Scotland on Saturday March 3rd 2012 at 21:40 GMT. Extremely bright meteors or "bolides" can also seen occasionally. Typically these objects are as bright as or brighter than the full moon. A recent example of such an object was seen over the West Country, Wales and the West Midlands on June 30th 2014 at 03:04 BST.

Another loosely-related phenomenon is the re-entry of space debris from space vehicles and satellites whose orbits are decaying to the point where they burn up in the Earth's atmosphere. A recent well-reported example of this occurred at around 23:00 BST on Friday September 21st 2012.

Top Top of page

Starfish imageComets

Comet McNaught - January 2007There are a number of comets around the sky at the moment. However, most of them require telescopic assistance to see them and some may be too far south in the sky to be seen by observers based in the United Kingdom. Here is a summary of the comets that may be accessible to northern observers with binoculars.

The brightest comets currently visible in the night sky require a small telescope to see them. However, there is one object which has been discovered recently which may come to prominence later in the year. C/2017 O1 was discovered on Wednesday July 19th by the All-Sky Automated Survey for Supernovae program. It is expected to reach perihelion in mid-October when it will be 0.7au from the Earth at a magnitude of around seven. At the start of August, it lies in the constellation of Eridanus, moving into Cetus in the middle of month and ending August in the constellation of Taurus. It is currently visible with a small telescope at magnitude 9.5 low in the eastern morning twilight sky. As the month progresses, it will gradually get higher in the eastern twilight sky and become visible with binoculars.

Top Top of page

Starfish imageNoctilucent Clouds

Noctilucent Cloud Strictly speaking, this phenomenon is an atmospheric one rather than a truly astronomical one. Nonetheless, living in the United Kingdom, we are well placed to see this unusual spectacle during the shorter nights of the summer months, particularly in June and July.

These tenuous cloud-like structures are composed of ice-coated particles at an altitude of around 80km in the mesosphere, approximately four times higher than the limiting altitude of cirrus cloud. Created by water vapour freezing around meteor smoke in the upper atmosphere, their altitude means that they appear silvery-blue in colour against the darker twilight sky when the Sun lies between 6° and 16° below the horizon.

Noctilucent or "night shining" Cloud is normally seen between 10° and 20° above the northern horizon exhibiting a range of forms — perhaps the most common is the "herring-bone" pattern. Normal visibility limits are mid-May to mid-August, peaking around the time of the Summer Solstice. More information, including the facility to report your sightings, can be found at the Noctilucent Cloud Observers' Homepage.

A word of warning; displays are unpredictable and more frequently seen from the northern half of the United Kingdom. Nevertheless, observations have been submitted by observers living in this locality e.g. from Exeter and Castle Cary.

Maps constructed from AIM satellite imagery showing the current positions of Noctilucent Clouds have been restored. They can be found here.

A particularly nice animation of this phenomenon taken before dawn on June 3rd 2013 by The Sky at Night's Pete Lawrence is well worth a look. A photograph demonstrating that these clouds can be seen from southern parts of the United Kingdom was taken by D. Tate in Castle Cary in the early hours of June 10th 2013.

News ...

In late May 2017, the first signs of the northern noctilucent cloud season were observed. However, the surge in sightings in June that normally occurs following the initial displays failed to materialize. This is the first time this has happen in two decades. Latest research shows that this has been due to a "heat wave" in the mesosphere, a layer 83km above the Earth's surface, where these clouds form on small particles of meteor smoke. This heat wave is coming to an end and we can expect more displays of noctilucent cloud. From a local standpoint, a photographic report of noctilucent cloud was made from Ilminster between 02:45 BST and 03:45 BST on Friday June 16th demonstrating that this elusive phenomenon can be seen from our latitudes.

Top Top of page

Starfish imageInternational Space Station

NASA International Space Station photo If you want to look for the International Space Station (ISS) as it passes over Taunton, please have a look at this page on the Heavens Above web site. The ISS is at least as bright as a first magnitude star and can approach the brightness of Venus. Similarly, if you want to look for the Chinese space station, Tiangong-1, have a look at this page. It has been known for some time now that Tiangong-1 will re-enter the Earth's atmosphere in an "uncontrolled manner" late in 2017. Tiangong-1 is significantly fainter than the ISS, normally as bright as a third or fourth magnitude star. Information for Tiangong-2, the latest Chinese addition to the space stations orbiting the Earth, can be found on this page. It is of a similar brightness to the larger Tiangong-1. Predictions for other satellites may also be obtained from the Heavens Above web site.

Another satellite-related phenomena to look out for are the so-called "Iridium flares". These bright flashes of sunlight reflecting off the Iridium series of communication satellites can be seen at night and also occasionally during the daytime if they are bright enough. Predictions for the next seven nights are available.

Top Top of page

Starfish imageAurorae

Ovation auroral prediction for the northern hemisphere

The above image is a 30 minute forecast of the location and probability of auroral activity based loosely on a model developed at Johns Hopkins' Applied Physics Laboratory known as the Ovation Aurora Forecast model. It provides estimates of the energy per unit area on the Earth's atmosphere from observations of the solar wind and interplanetary magnetic field made by the Advanced Composition Explorer satellite in conjunction with empirical relationships derived from the Defense Meteorological Satellite Program and shows where the aurora is most likely to be seen and how bright it is likely to be. The model generates a global estimate of power, called the Hemispheric Power, deposited into the atmosphere in gigawatts (GW). For powers of less than 20GW, little or no aurora may be visible. For powers of 20-50GW, you may need to be relatively close to the aurora to see it. For values above 50GW, the aurora should be easily observable, active and mobile. For values above 100GW, this is considered to be a significant storm where the aurora may be visible from hundreds of miles away. The current prediction is downloaded when you load this page. If you want to download the latest model, simply reload this page or hit F5. If you want to see the full-sized map, please click on the above image.

If an auroral display is possible or likely, warnings can be found at AuroraWatch UK. More UK-focused geomagnetic data can be found at the British Geological Survey web site.

Top Top of page

Starfish imageSky chart for mid-August at 22:00 BST for Taunton

Sky chart for mid-August 2017 from Taunton at 22:00 BST

The above sky chart, generated from the web site, shows what the night sky looks like at 22:00 BST on Wednesday August 16th 2017 from Taunton. The night sky will look the same an hour later at 23:00 BST at the beginning of the month and an hour earlier at 21:00 BST at the end of the month. Please click on the chart to see a full-sized sky chart image. If you want to generate your own star chart for Taunton for another date and/or time please follow this link

Top Top of page

Starfish imageRise/Set Times (BST) for the Sun & Moon for Taunton

In August 2017, the amount of daylight (measured from sunrise to sunset) decreases from 15 hours 20 minutes at the start of the month to 13 hours 36 minutes at the end of the month. Total daylight (sunrise to sunset) for the month is 449 hours 10 minutes.

start and end times of civil, nautical and astronomical twilights.

August 2017
Date &
Rise/Set timesDay
h mh mh mh mh m
15Tue05:5920:33** **14:4714:34
30Wed06:2320:0215:38** **13:39
** ** No phenomenon that day
PLEASE NOTE: These times are in Greenwich Mean Time (GMT) except between 01:00 GMT on March 26th and 01:00 GMT on October 29th when the times are in BST (British Summer Time) which is one hour in advance of GMT.

Useful area for table of rise/set times The timings in the table above should be accurate to within 1-2 minutes inside the red circle superimposed on the map shown on the left.

Rising and setting times for the Sun, Moon and planets and times of twilights for other locations can be obtained from HMNAO's Websurf web pages.

For the drivers amongst you, the "Hours of Darkness", as defined by the Road Vehicle Lighting Regulations (1989), start half an hour after sunset and end half an hour before the following sunrise. Headlights should be used during the Hours of Darkness and sidelights in the half hour after sunset and the half hour before sunrise.

For the VFR (Visual Flight Rules) pilots amongst you, night, according to Statutory Instrument 2009 No. 3015, Civil Aviation, The Air Navigation Order 2009, Part 33 (Interpretation), Article 255(1), means "the time from half an hour after sunset until half an hour before sunrise (both times inclusive), sunset and sunrise being determined at surface level". In other words, the night period starts at the beginning of the Hours of Darkness and finishes at the end of the Hours of Darkness.

Top Top of page

© Crown Copyright 2012-2017 / Privacy Policy
Last modified: Monday, 21 August 2017 at 09:28:30 BST